1) The acid dissociation constant (K_a) for benzoic acid is 6.3 x 10^{-5} . Find the pH of a 0.35 M solution of benzoic acid.

2) Find the pH of a 0.275 M hypochlorous acid solution. $K_a = 3.0 \times 10^{-8}$.

3) Find the pH of a solution that contains 0.0925 M nitrous acid ($K_a = 4.5 \times 10^{-4}$) and 0.139 M acetic acid ($K_a = 1.8 \times 10^{-5}$).

1)		HC ₇ H ₃ O	_{2(aq)}	$_{(aq)} + C_7 H_3 O_2^{-}_{(aq)}$	aq)
	initial	0.35 M	0 M	0 M	
	change	- x M	+ x M	+x M	
	equilibrium	(0.35 – x) M	хМ	x M	

Note that: $(0.35 - x) M \approx 0.35 M so$

$$K_a = [H^+][C_7H_3O_2^-] = (x)(x) = (x)(x) = x^2 = 6.3 \times 10^{-5}$$

 $[HC_7H_3O_2]$ (0.35 - x) (0.35)

$$x^2 = (6.3 \times 10^{-5}) (0.35) = 2.205 \times 10^{-5}$$

$$x = 4.7 \times 10^{-3} M$$
 $x = moles/L formed$

$$pH = - \log (4.7 \times 10^{-3}) = 2.33$$

Note that: $(0.275 - x) M \approx 0.275 M so$

$$K_a = [H^+][ClO^-] = (x)(x) = (x)(x) = (x)(x) = x^2 = 3.0 \times 10^{-8}$$

[HClO] (0.275 - x) (0.275)

$$x^2 = (3.0 \times 10^{-8}) (0.275) = 8.25 \times 10^{-9}$$

 $x = 9.08 \times 10^{-5}$ M

$$x = 9.08 \times 10^{-5} M$$

$$pH = -\log(9.08 \times 10^{-5}) = 4.042$$

3) First the amount of H⁺ from each acid must be calculated.

	HNO _{2(a}	_{aq)} ≒ H⁺	(aq) + $NO_2(aq)$
initial	0.0925 M	0 M	0 M
change	- x M	+ x M	+x M
equilibrium	(0.0925 – x) M	x M	x M

Note that: $(0.0925 - x) M \approx 0.0925 M so$

$$K_a = [H^+][NO_2^-] = (x)(x) = (x)(x) = x^2 = 4.5 \times 10^{-4}$$

 $[HNO_2]$ = (0.0925 - x) = (0.0925)

$$x^2 = (4.5 \times 10^{-4}) (0.0925) = 4.1625 \times 10^{-5}$$

 $x = 6.45 \times 10^{-3}$ M $x = \text{moles/L formed}$

	$HC_2H_3O_{2(aq)} = \Box$	$H^+_{(aq)}$ +	$C_2H_3O_2^{-1}$
initial	0.139 M	0 M	0 M
change	- x M	+ x M	+x M
equilibrium	(0.139 – x) M	хM	хM

Note that: $(0.139 - x) M \approx 0.139 M so$

$$K_{a} = \underbrace{[H^{+}][C_{2}H_{3}O_{2}^{-}]}_{[H C_{2}H_{3}O_{2}]} = \underbrace{(x)(x)}_{(0.139 - x)} = \underbrace{(x)(x)}_{(0.139)} = \underbrace{x^{2}}_{(0.139)} = 1.8 \times 10^{-5}$$

$$x^2 = (1.8 \times 10^{-5}) (0.139) = 2.502 \times 10^{-6}$$

 $x = 1.58 \times 10^{-3} M$

Then add the results together and use that value to find the pH.

$$6.45 \times 10^{-3} M + 1.58 \times 10^{-3} M = 8.03 \times 10^{-3} M$$

$$pH = - log (8.03 \times 10^{-3}) = 2.095$$