1) Find the pH of a solution that contains 85 grams of hydrochloric acid (HCl) dissolved in 2.5 L of water.
2) Find the pH of a solution that contains 2.95 grams of nitrous acid $\left(\mathrm{HNO}_{2}\right)$ dissolved in 550 mL of water.
3) Find the pH of a solution that contains 2.5 moles of hydrochloric acid (HCl) and 1.4 moles of acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ dissolved in 110 L of water.
4) A solution has a $\left[\mathrm{H}^{+}\right]$concentration of $5.3 \times 10^{-6} \mathrm{M}$. Is this an acidic or basic solution? Why?
5) If an acidic solution having a pH of 3.95 is diluted from 15 mL to a final volume of 100 mL , what would be the pH of the resulting solution?

Solutions

Note: The significant figures in the concentration of $\left[\mathrm{H}^{+}\right]$or [OH^{-}] is equal to the number of decimal places in the pH or pOH and vice versa.

1) Find the pH of a solution that contains 85 grams of hydrochloric acid (HCl) dissolved in 2.5 L of water.

$$
85 \mathrm{~g} \mathrm{HCl} \times \frac{1 \text { mole HCl }}{36.5 \mathrm{~g} \mathrm{HCl}}=2.3 \text { mole HCl }
$$

2.3 mole $\mathrm{HCl}=0.92 \mathrm{M} \mathrm{HCl}$
$2.5 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$
$\mathrm{pH}=-\log (0.92)=0.03$
2) Find the pH of a solution that contains 2.95 grams of nitrous acid $\left(\mathrm{HNO}_{2}\right)$ dissolved in 550 mL of water.

$2.95 \mathrm{~g} \mathrm{HNO}_{2} \times 1{\mathrm{~mole} \mathrm{HNO}_{2}}_{2}=0.0628{\mathrm{~mole} \mathrm{HNO}_{2}}^{2}$
 $47 \mathrm{~g} \mathrm{HNO}_{2}$

0.0628 mole HNO $_{2}=0.11 \mathrm{M} \mathrm{HNO}_{2}$

$$
0.55 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{pH}=-\log (0.11)=0.96
$$

3) Find the pH of a solution that contains 2.5 moles of hydrochloric acid (HCl) and 1.4 moles of acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ dissolved in 110 L of water.

2.5 mole $\mathrm{HCl}+1.4 \mathbf{~ m o l e ~ H C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=\mathbf{3 . 9}$ mole acid

3.9 mole acid $=0.035 \mathbf{M}$ solution
 110 L H2 $_{2}$

$\mathrm{pH}=-\log (0.035)=1.46$
4) A solution has a $\left[\mathrm{H}^{+}\right]$concentration of $5.3 \times 10^{-6} \mathrm{M}$. Is this an acidic or basic solution? Why?
$\mathrm{pH}=-\log \left(5.3 \times 10^{-6}\right)=5.28$
This solution is slightly acidic because its $\mathbf{p H}<7$.
5) If an acidic solution having a pH of 3.95 is diluted from 15 mL to a final volume of 100 mL , what would be the pH of the resulting solution?

```
\(3.95=-\log x\)
\(3.95=\log x^{-1}\)
    \(10^{3.95}=10{ }^{\log x^{-1}}\)
\(8912.5=\mathrm{x}^{-1}\)
\(\mathrm{x}=\frac{1}{8912.5}=1.1 \times 10^{-4} \mathrm{M}\)
\(M_{1} \mathbf{V}_{\mathbf{1}}=M_{2} \mathbf{V}_{\mathbf{2}}\)
\(M_{2}=\underline{M}_{V_{1}} \underline{V}_{\mathbf{1}}=\frac{\left(1.1 \times 10^{-4} \mathrm{M}\right)(15 \mathrm{~mL})}{(100 . \mathrm{mL})}=1.7 \times 10^{-5} \mathrm{M}\)
\(\mathrm{pH}=-\log \left(1.7 \times 10^{-5}\right)=4.77\)
```

