1) Find the pH of a $9.8 \times 10^{-4} \mathrm{M} \mathrm{HI}$ solution.
2) Find the pH of a $2.76 \times 10^{-4} \mathrm{M} \mathrm{NaOH}$ solution. (Hint: this is a basic solution concentration is of OH^{-})
3) Find the pH of a solution made by diluting 35 mL of $4.5 \mathrm{M} \mathrm{HNO}_{3}$ to a final volume of 2.25 L .
4) Find the pH of 4.75 L of an aqueous solution that contains 3.20 grams of HCl and 1.85 grams of nitrous acid.
5) Find the $\mathrm{pOH}^{\prime} \mathrm{s}$ for the solutions in problems $1-4$ above:
\#1)
\#2)
\#3) \qquad
\#4) \qquad
Everett Community College Tutoring Center
Student Support Services Program

Solutions
Note: The significant figures in the concentration of $\left[\mathrm{H}^{+}\right]$or [$\left.\mathrm{OH}^{-}\right]$is equal to the number of decimal places in the pH or pOH and vice versa.

1) Find the pH of a $9.8 \times 10^{-4} \mathrm{M} \mathrm{HI}$ solution.

$$
\mathrm{pH}=-\log \left(9.8 \times 10^{-4}\right)=3.01
$$

2) Find the pH of a $2.76 \times 10^{-4} \mathrm{M} \mathrm{NaOH}$ solution.

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left(2.76 \times 10^{-4}\right)=3.559 \\
& \mathrm{pH}=14.000-3.559=10.441
\end{aligned}
$$

3) Find the pH of a solution made by diluting 35 mL of $4.5 \mathrm{M} \mathrm{HNO}_{3}$ to a final volume of 2.25 L .

$$
\begin{aligned}
& M_{1} V_{1}=M_{2} V_{2} \\
& M_{2}=\frac{M_{1} V_{1}}{V_{2}}=\frac{(4.5 \mathrm{M})(35 \mathrm{~mL})}{(2250 \mathrm{~mL})}=0.070 \mathrm{M} \\
& \mathrm{pH}=-\log (0.070)=1.15
\end{aligned}
$$

4) Find the pH of 4.75 L of an aqueous solution that contains 3.20 grams of HCl and 1.85 grams of nitrous acid.
$3.20 \mathrm{~g} \mathrm{HCl} \times \frac{1 \mathrm{~mole} \mathrm{HCl}}{36.45 \mathrm{~g} \mathrm{HCl}}=0.0878 \mathrm{~mole} \mathrm{HCl}$
$1.85 \mathrm{~g} \mathrm{HNO}_{2} \times 1$ mole $\mathrm{HNO}_{2}=0.0394 \mathrm{~mole} \mathrm{HNO}_{2}$
$47 \mathrm{~g} \mathrm{HNO}_{2}$
0.0878 mole $\mathbf{H C l}+0.0394$ mole $_{\mathbf{~ H N O}}^{2} \boldsymbol{=} \mathbf{~} 0.1272$ moles acid
$\underline{0.1272}$ moles acid $=\mathbf{0 . 0 2 6 8} \mathbf{M}$ acid solution
$4.75 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$
$\mathrm{pH}=-\log (\mathbf{0 . 0 2 6 8})=1.572$
5) Find the pOHs for the solutions in problems 1 - 4 above:
\#1) $\quad \mathrm{pOH}=14.00-\mathbf{3 . 0 1}=\mathbf{1 0 . 9 9}$
\#2) $\mathrm{pOH}=3.559$
\#3) $\quad \mathrm{pOH}=14.00$ - $1.15=12.85$
\#4) $\quad \mathrm{pOH}=14.000-1.572=12.428$
