1) Multiplication/Division Rules:

The number that has "the fewest number of Significant Figures" decides the number of significant figures in the final answer.

Example:

$$
2.711 \times 6.3=17.0793 \Rightarrow 17
$$

2 SF in the final answer (Choose the fewest SF)

2) Addition/ Subtraction Rules:

When two numbers are added or subtracted the final answer should not have greater certainty than the original measurements.

Round the result of addition/subtraction to the same decimal place as the measurement with the highest/biggest uncertainty.

Example:

- Addition/ Subtraction of Scientific Numbers with the SAME Exponents:

Step 1: If exponents are the same, then proceed with the addition/ subtraction operations immediately.

Example:

The highest uncertainty is in the hundredths place.

- Addition/ Subtraction of Scientific Numbers with DIFFERENT Exponents:

Step 1: Make exponents the same.
Step 2: Perform the addition or subtraction operation.
Step 3: After the exponents have been made the same, round answer to the same decimal place as the measurement with the highest/biggest uncertainty.

Step 4: Make sure the final answer is in standard scientific notation.
Example: $\quad\left(9.98 \times 10^{-3}\right)+\left(8.04 \times 10^{-5}\right)=$?
Step 1: 8.04×10^{-5} becomes 0.0804×10^{-3}
Step 2 and 3: $\left(9.98 \times 10^{-3}\right)+\left(0.0804 \times 10^{-3}\right)=10.0604 \times 10^{-3}=$ \qquad

The highest uncertainty is in the hundredths place.
Step 4: The correct scientific notation adjustment must be made! Final answer $=>1.006 \times 10^{-2}$

Special Cases:

Internal Zeros are ALWAYS Significant

Example: $\quad 4.001$ => 4 Significant Figures
Leading Zeros are NEVER Significant
Example: $\quad 0.000007$ => 1 Significant Figure
Trailing Zeros are Significant ONLY IF the decimal point is specified
Example: $\quad 200000$ => 1 Significant Figure
200. => 3 Significant Figures
200.1 => 4 Significant Figures

Practice Problems:

1. $414+7750+2500=$
2. $0.254-0.367+5.4892=$
3. $24.8 \times 6.4 \times 301=$
4. $\left(2.66 \times 10^{4}\right)-\left(1.03 \times 10^{3}\right)=$
5. $5.905 / 14.0=$
6. $(112 \times 0.456) /(3.2 \times 120)=$
