Given the reaction: $CaCl_2(aq) + Na_2C_2O_4(aq) \rightarrow CaC_2O_4(s) + NaCl(aq)$

- a) If 0.043g of oxygen was produced, how many grams of chlorine reacted?
- b) How many moles of CaCl₂ reacted?
- c) How many moles of NaCl were produced if 4.39g of Na₂C₂O₄ reacted?

STEP 1: Make sure the equation is balanced!

The equation is not balanced. Adding a 2 in front of NaCl in the products yields:

 $CaCl_2(aq) + Na_2C_2O_4(aq) \rightarrow CaC_2O_4(s) + 2 NaCl(aq)$

Са	1	1	Са
Cl	2	2 1	Cl
Na	2	2 1	Na
$C_{2}O_{4}$	1	1	C_2O_4

Now the equation has equal numbers of each atom in both reactants and products.

a) If 0.043g of oxygen was produced, how many grams of chlorine reacted?

STEP 2: Set up the units going from what we have to what we want.

Cancel the units until the desired unit is the only one left.

STEP 3: Calculate any molar masses (formula weights) needed and fill in the numbers using the balanced equation to find the molar ratios.

Everett Community College Tutoring Center Student Support Services Program

b) How many moles of CaCl₂ reacted?

STEP 2: Set up the units going from what we have to what we want.

Cancel the units until the desired unit is the only one left.

STEP 3: Calculate any molar masses (formula weights) needed and fill in the numbers using the balanced equation to find the molar ratios.

c) How many moles of NaCl were produced if 4.39g of Na₂C₂O₄ reacted?

STEP 2:Set up the units going from what we have to what we want.

Cancel the units until the desired unit is the only one left.

STEP 3: Calculate any molar masses (formula weights) needed and fill in the numbers using the balanced equation to find the molar ratios.

$$\frac{4.39 \text{ g Na}_2\text{C}_2\text{O}_4}{1 \text{ mole Na}_2\text{C}_2\text{O}_4} \frac{2 \text{ mole NaCl}}{1 \text{ mole Na}_2\text{C}_2\text{O}_4} = 0.0655 \text{ mole CaCl}_2$$

$$= 0.0655 \text{ mole CaCl}_2$$

$$= 0.0655 \text{ mole CaCl}_2$$

The same basic steps work for all three problems. Remember your significant figures!