Given the reaction: $\mathrm{CaCl}_{2}(a q)+\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q) \rightarrow \mathrm{CaC}_{2} \mathrm{O}_{4}(s)+\mathrm{NaCl}(a q)$
a) If 0.043 g of oxygen was produced, how many grams of chlorine reacted?
b) How many moles of CaCl_{2} reacted?
c) How many moles of NaCl were produced if 4.39 g of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ reacted?

STEP 1: Make sure the equation is balanced!
The equation is not balanced. Adding a 2 in front of NaCl in the products yields:

$$
\mathrm{CaCl}_{2}(a q)+\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q) \rightarrow \mathrm{CaC}_{2} \mathrm{O}_{4}(s)+2 \mathrm{NaCl}(a q)
$$

Ca	1	1	Ca
Cl	2	2	1

Now the equation has equal numbers of each atom in both reactants and products.

a) If 0.043 g of oxygen was produced, how many grams of chlorine reacted?

STEP 2: Set up the units going from what we have to what we want.

-90	mole -	mole $\mathrm{CaC}_{2} \mathrm{O}_{4}$	molecact	mole Ct	g Cl
	-90	mole θ	$\mathrm{moleCaC}_{2}$	CaCT	mole Ct

Cancel the units until the desired unit is the only one left.
STEP 3: Calculate any molar masses (formula weights) needed and fill in the numbers using the balanced equation to find the molar ratios.

0.043-90	1 mole O	1 mole $\mathrm{CaC}_{2} \mathrm{O}_{4}$	$1 \mathrm{~mole} \mathrm{CaCT}_{2}$	2 mole-Ct	35.45 g Cl	$=0.048 \mathrm{~g} \mathrm{Cl}$
	16.00 go	4 mole θ	1 mole CaC_{2}	1 molecaCT	1 mole- Ct	
	molar mass	molar ratio	molar ratio	molar ratio	molar	

b) How many moles of CaCl_{2} reacted?

STEP 2: Set up the units going from what we have to what we want.

-90	mole 0	moleCaC ${ }_{2} \mathrm{O}_{4}$	$\mathrm{mole} \mathrm{CaCl}_{2}$
	-90	moleO	moleCaC2 ${ }_{4}$

Cancel the units until the desired unit is the only one left.
Step 3: Calculate any molar masses (formula weights) needed and fill in the numbers using the balanced equation to find the molar ratios.

0.043-90	1 mole O	$1 \mathrm{moleCaC}_{2} \mathrm{O}_{4}$	$1 \mathrm{~mole} \mathrm{CaCl}_{2}$	$=6.7 \times 10^{-4} \mathrm{~mole} \mathrm{Cl}$
	16.00 go	4 mole θ	$1 \mathrm{moleCaC}_{2} \mathrm{O}_{4}$	
	molar mass	molar ratio	molar rati	

c) How many moles of NaCl were produced if 4.39 g of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ reacted?

STEP 2:Set up the units going from what we have to what we want.

$\mathrm{gNa}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	mole $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	mole NaCl
	$\mathrm{gNa}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	mole $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

Cancel the units until the desired unit is the only one left.
STEP 3: Calculate any molar masses (formula weights) needed and fill in the numbers using the balanced equation to find the molar ratios.

$4.39 \mathrm{~g} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	1 mole $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	2 (mole NaCl
	$\underset{\text { molar mass }}{134.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}$	$1 \underset{\text { molar ratio }}{\text { mole } \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}$

The same basic steps work for all three problems. Remember your significant figures!

