1) 6.80 g of sodium chloride are added to 2750 mL of water. Find the mole fraction of the sodium chloride and of the water in the solution.
2) How many grams of magnesium cyanide are needed to make 275 mL of a 0.075 M solution?
3) How many grams of magnesium cyanide would you need to add to 275 mL of water to make a 0.075 molal solution?
4) Explain how to make one liter of a 1.25 molal sodium hydroxide solution.
5) What is the molarity of a solution made when 52 grams of potassium sulfate are diluted to a volume of 4100 mL ?
6) The density of ethylene glycol (antifreeze, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ ) is $1.09 \mathrm{~g} / \mathrm{mL}$. How many grams of ethylene glycol should be mixed with 375 mL of water to make a $7.50 \%(\mathrm{v} / \mathrm{v})$ mixture?
7) Find the volume of a 0.75 M solution if it contains 39 grams of potassium hydroxide.
8) How many grams of hydrochloric acid are present in 3.0 L of a 0.750 M solution?
9) The concentration of oxygen in water at the bottom of a lake is $0.48 \mathrm{~g} / \mathrm{L}$ and the pressure is 2.5 atm . If water from the bottom is moved by a current upwards to a depth where the pressure is 1.3 atm , what is the concentration of the oxygen in the water at this depth?
10) What is the molarity of a solution in which 0.850 grams of ammonium nitrate are dissolved in 345 mL of solution?
11) Explain how you would make 675 mL of a 0.400 M barium iodide solution.
1. $\quad 6.80 \mathrm{~g} \mathrm{NaCl} \times \frac{1 \text { mole NaCl }}{58.45 \mathrm{~g} \mathrm{NaCl}}=0.116$ mole NaCl
$2750 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O} \times \underset{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1} \times \underline{1 \mathrm{~mole} \mathrm{H}_{2} \mathrm{O}}=152.8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ $1 \mathrm{mLH} \mathrm{H}_{2} \mathrm{O} \quad 18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
mole fraction $\mathrm{NaCl}=0.116$ mole $\mathrm{NaCl}=7.59 \times 10^{-4}$
152.9 mole soln
mole fraction $\mathrm{H}_{2} \mathrm{O}=152.8$ mole $\mathrm{H}_{2} \mathrm{O}=0.999$ 152.9 mole soln
2. $275 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1000 \mathrm{~mL} \mathrm{H}} \mathrm{H}_{2} \mathrm{O} \quad=0.275 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$
$275 \mathrm{~L} \mathrm{Mg}(\mathrm{CN})_{2} \times \frac{0.075 \mathrm{~mole} \mathrm{Mg}(\mathrm{CN})_{2}}{1 \mathrm{LMg}(\mathrm{CN})_{2}} \times \frac{76.3 \mathrm{~g} \mathrm{Mg}(\mathrm{CN})_{2}}{1 \mathrm{~mole} \mathrm{Mg(CN})_{2}}=1.6 \mathrm{~g} \mathrm{Mg}(\mathrm{CN})_{2}$

$$
1 \mathrm{LMg}(\mathrm{CN})_{2} \quad 1 \text { mole } \mathrm{Mg}(\mathrm{CN})_{2}
$$

3. $275 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O} \times \underline{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times 1 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}=0.275 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$ $1 \mathrm{mLH} \mathrm{H}_{2} \mathrm{O} \quad 1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$0.275 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} \times 0.075 \mathrm{~mol} \mathrm{Mg}(\mathrm{CN})_{2} \times 76.3 \mathrm{~g} \mathrm{Mg}(\mathrm{CN})_{2}=1.6 \mathrm{~g} \mathrm{Mg}(\mathrm{CN})_{2}$ $1 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} \quad 1 \mathrm{~mole} \mathrm{Mg}(\mathrm{CN})_{2}$
4. 1.25 molal $\mathrm{NaOH}=\underline{1.25 \text { mole } \mathrm{NaOH}}$
$1 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$
1.25 mole NaOH $\times \frac{40 \mathrm{~g} \mathrm{NaOH}}{1 \text { mole NaOH }}=50.0 \mathrm{~g} \mathrm{NaOH}$

Measure 50.0 g NaOH and add water to 1 L volume.
5. $\quad 52 \mathrm{~g} \mathrm{~K}_{2} \mathrm{SO}_{4} \times \frac{1 \mathrm{~mole} \mathrm{~K}_{2} \mathrm{SO}_{4}}{174 \mathrm{~g} \mathrm{~K}_{2} \mathrm{SO}_{4}}=0.299$ mole K $_{2} \mathrm{SO}_{4}$
0.299 mole K $_{2} \mathrm{SO}_{4}=0.073 \mathrm{M}$
$4.100 \mathrm{~L} \mathrm{~K}_{2} \mathrm{SO}_{4}$
6. $\quad 375 \mathrm{~mL} \times 0.0750=28.125 \mathrm{~mL}$ ethylene glycol
28.125 mL ethylene glycol $\times 1.09 \mathrm{~g}$ ethylene glycol $/ 1 \mathrm{ml}=30.7 \mathrm{~g}$ ethylene glycol
7. $39 \mathrm{~g} \mathrm{KOH} \times \frac{1 \mathrm{~mole} \mathrm{KOH}}{56 \mathrm{~g} \mathrm{KOH}} \times \frac{1 \mathrm{~L} \mathrm{KOH}}{0.75 \mathrm{~mol} \mathrm{KOH}}=0.93 \mathrm{~L}=930 \mathrm{~mL}$
8. $\quad 3.0 \mathrm{~L}$ soln $\times \underline{0.750 \text { moles } \mathrm{HCl} \times 36.45 \mathrm{~g} \mathrm{HCl}=82 \mathrm{~g} \mathrm{HCl}}$

1 L soln $\quad 1$ mole HCl
9. $\quad \frac{1.3 \mathrm{~atm}}{2.5 \mathrm{~atm}}=\frac{\mathrm{C}}{0.48 \mathrm{~g} / \mathrm{L}} \quad \rightarrow \quad \mathrm{C}=\frac{(1.3 \mathrm{~atm})(0.48 \mathrm{~g} / \mathrm{L})}{(2.5 \mathrm{~atm})}=0.25 \mathrm{~g} / \mathrm{L}$
10. $\quad 0.850 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3} \times \frac{1 \text { mole NH}}{40 \mathrm{NO}_{3}}=0.0106 \mathrm{~mole} \mathrm{gH}_{4} \mathrm{NO}_{3}$
0.0106 mole $\mathrm{NH}_{4} \mathrm{NO}_{3}=0.0307 \mathrm{M}$
$0.345 \mathrm{~L} \mathrm{NH}_{4} \mathrm{NO}_{3}$
 $1 \mathrm{~L} \mathrm{BaI}_{2}$
0.270 moles $\mathrm{BaI}_{2} \times 391.1 \mathrm{~g} \mathrm{BaI}_{2}=106 \mathrm{~g} \mathrm{BaI}_{2}$ $1 \mathrm{~mole} \mathrm{BaI}_{2}$
Measure $106 \mathrm{~g} \mathrm{BaI}_{2}$ into a beaker and add water to 675 mL volume.

