1) Explain how you would make $750 . \mathrm{mL}$ of a 1.35 M KOH solution.
2) If you dilute 15.0 mL of a 12.0 M HCl solution to make a 2.50 M HCl solution what will the final volume be?
3) How many grams of magnesium bromide are needed to make 1.0 L of a 4.0 M magnesium bromide solution?
4) Why is the following procedure is incorrect: To make 1.00 L of a $1.00 \mathrm{M} \mathrm{CaCl}_{2}$ solution, dissolve 111 grams of calcium chloride in 1.00 L of water.

Solutions

1) Explain how you would make 750 . mL of a 1.35 M KOH solution.

$0.750 \mathrm{LKOH} \times 1.35 \mathrm{~mole} \mathrm{KOH} \times 59 \mathrm{~g} \mathrm{KOH}=56.7 \mathrm{~g} \mathrm{KOH}$ $1 \mathrm{LKOH} \quad 1 \mathrm{~mole} \mathrm{KOH}$

Measure $\mathbf{5 6 . 7} \mathbf{~ g ~ K O H ~ i n t o ~ a ~ c o n t a i n e r ~ a n d ~ a d d ~ w a t e r ~ t o ~} \mathbf{7 5 0} \mathbf{~ m L}$ volume.
2) If you dilute 15.0 mL of a 12.0 M HCl solution to make a 2.50 M HCl solution what will the final volume be?
$(12.0 \mathrm{M})(15.0 \mathrm{~mL})=(2.50 \mathrm{M}) \mathrm{V}_{2}$

$$
\begin{equation*}
V_{2}=(12.0 \mathrm{M})(15.0 \mathrm{~mL})=72.0 \mathrm{~mL} \tag{2.50M}
\end{equation*}
$$

3) How many grams of magnesium bromide are needed to make 1.0 L of a 4.0 M magnesium bromide solution?

$$
\text { 1.0 L MgBr } 2 \times \frac{4.0 \mathrm{~mole}_{\mathrm{MgBr}_{2}}}{1 \mathrm{~L} \mathrm{MgBr}_{2}} \times \frac{184.3 \mathrm{~g} \mathrm{MgBr}_{2}}{1 \mathrm{~mole} \mathrm{MgBr}_{2}}=737.2 \mathrm{~g} \mathrm{MgBr}_{2}
$$

4) Why is the following procedure is incorrect: To make 1.00 L of a $1.00 \mathrm{M} \mathrm{CaCl}_{2}$ solution, dissolve 111 grams of calcium chloride in 1.00 L of water.
Making a solution this way would result in a final volume greater than 1.00 L because the calcium chloride has volume too. The proper method would be to measure $111 \mathrm{~g} \mathrm{CaCl}_{2}$ into a container, then add water to 1.00 L volume.
