Mixed Gas Laws Worksheet

1) How many moles of gas occupy 98 L at a pressure of 2.8 atmospheres and a temperature of 292 K ?
2) If 5.0 moles of O_{2} and 3.0 moles of N_{2} are placed in a 30.0 L tank at a temperature of 25° C , what will the pressure of the resulting mixture of gases be?
3) A balloon is filled with 35.0 L of helium in the morning when the temperature is $20.0^{\circ} \mathrm{C}$. By noon the temperature has risen to $45.0^{\circ} \mathrm{C}$. What is the new volume of the balloon?
4) A 35 L tank of oxygen is at 315 K with an internal pressure of 190 atmospheres. How many moles of gas does the tank contain?
5) A balloon that can hold 85 L of air is inflated with 3.5 moles of gas at a pressure of 1.0 atmosphere. What is the temperature in ${ }^{\circ} \mathrm{C}$ of the balloon?
6) CaCO_{3} decomposes at $1200^{\circ} \mathrm{C}$ to form CO_{2} gas and CaO . If 25 L of CO_{2} are collected at $1200^{\circ} \mathrm{C}$, what will the volume of this gas be after it cools to $25^{\circ} \mathrm{C}$?
7) A helium balloon with an internal pressure of 1.00 atm and a volume of 4.50 L at $20.0^{\circ} \mathrm{C}$ is released. What volume will the balloon occupy at an altitude where the pressure is 0.600 atm and the temperature is $-20.0^{\circ} \mathrm{C}$?
8) There are 135 L of gas in a container at a temperature of $260^{\circ} \mathrm{C}$. If the gas was cooled until the volume decreased to 75 L , what would the temperature of the gas be?
9) $\quad \mathrm{A} 75 \mathrm{~L}$ container holds 62 moles of gas at a temperature of $215^{\circ} \mathrm{C}$. What is the pressure in atmospheres inside the container?
10) 6.0 L of gas in a piston at a pressure of 1.0 atm are compressed until the volume is 3.5 L . What is the new pressure inside the piston?
11) A gas canister can tolerate internal pressures up to 210 atmospheres. If a 2.0 L canister holding 3.5 moles of gas is heated to $1350^{\circ} \mathrm{C}$, will the canister explode?
12) The initial volume of a gas at a pressure of 3.2 atm is 2.9 L . What will the volume be if the pressure is increased to 4.0 atm ?
13) An airtight container with a volume of $4.25 \times 10^{4} \mathrm{~L}$, an internal pressure of 1.00 atm , and an internal temperature of $15.0^{\circ} \mathrm{C}$ is washed off the deck of a ship and sinks to a depth where the pressure is 175 atm and the temperature is $3.00^{\circ} \mathrm{C}$. What will the volume of the gas inside be when the container breaks under the pressure at this depth?
14) Two flasks are connected with a stopcock. Flask \#1 has a volume of 2.5 L and contains oxygen gas at a pressure of 0.70 atm . Flask \#2 has a volume of 3.8 L and contains hydrogen gas at a pressure of 1.25 atm . When the stopcock between the two flasks is opened and the gases are allowed to mix, what will the resulting pressure of the gas mixture be?
15) A weather balloon has a volume of 35 L at sea level (1.0 atm). After the balloon is released it rises to where the air pressure is 0.75 atm . What will the new volume of the weather balloon be?

Mixed Gas Laws Worksheet - Solutions

1) How many moles of gas occupy 98 L at a pressure of 2.8 atmospheres and a temperature of 292 K ?

$$
\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(2.8 \mathrm{~atm})(98 \mathrm{~L})}{(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K})(292 \mathrm{~K})}=11 \text { moles of gas }
$$

2) If 5.0 moles of O_{2} and 3.0 moles of N_{2} are placed in a 30.0 L tank at a temperature of 25° C, what will the pressure of the resulting mixture of gases be? $\mathbf{2 5}{ }^{\circ} \mathrm{C}=\mathbf{2 9 8} \mathrm{K}$

$$
\begin{aligned}
& \mathrm{O}_{2}: P=\frac{\mathrm{nRT}}{\mathrm{~V}}=\frac{(5.0 \mathrm{~mol})(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K})(298 \mathrm{~K})}{(30.0 \mathrm{~L})}=4.1 \mathrm{~atm} \\
& \mathrm{~N}_{2}: P=\frac{\mathrm{nRT}}{\mathrm{~V}}=\frac{(3.0 \mathrm{~mol})(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K})(298 \mathrm{~K})}{(30.0 \mathrm{~L})}=2.4 \mathrm{~atm} \\
& P_{\text {Tot }}=P_{\mathrm{O} 2}+P_{\mathrm{N} 2}=4.1 \mathrm{~atm}+2.4 \mathrm{~atm}=6.5 \mathrm{~atm}
\end{aligned}
$$

3) A balloon is filled with 35.0 L of helium in the morning when the temperature is $20.0^{\circ} \mathrm{C}$. By noon the temperature has risen to $45.0^{\circ} \mathrm{C}$. What is the new volume of the balloon?

$$
\begin{align*}
& T_{1}=20.0^{\circ} \mathrm{C}=293 \mathrm{~K}, \mathrm{~V}_{1}=35.0 \mathrm{~L}, \mathrm{~T}_{2}=45.0^{\circ} \mathrm{C}=318 \mathrm{~K}, \mathrm{~V}_{2}=? \\
& \mathrm{~V}_{2}=\underline{\mathrm{V}}_{1} \underline{T}_{T_{1}}=\frac{(35.0 \mathrm{~L})(318 \mathrm{~K})}{(293 \mathrm{~K})}=38.0 \mathrm{~L}
\end{align*}
$$

4) A 35 L tank of oxygen is at 315 K with an internal pressure of 190 atmospheres. How many moles of gas does the tank contain?

$$
n=\frac{P V}{R T}=\frac{(190 \mathrm{~atm})(35 \mathrm{~L})}{(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K})(315 \mathrm{~K})}=260 \text { moles of gas }
$$

5) A balloon that can hold 85 L of air is inflated with 3.5 moles of gas at a pressure of 1.0 atmosphere. What is the temperature in ${ }^{\circ} \mathrm{C}$ of the balloon?

$$
T=\frac{P V}{n R}=\frac{(1 \mathrm{~atm})(85 \mathrm{~L})}{(3.5 \mathrm{~mol})(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K})}=296 \mathrm{~K}=23^{\circ} \mathrm{C}
$$

6) CaCO_{3} decomposes at $1200^{\circ} \mathrm{C}$ to form CO_{2} gas and CaO . If 25 L of CO_{2} are collected at $1200^{\circ} \mathrm{C}$, what will the volume of this gas be after it cools to $25^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& T_{1}=1200^{\circ} \mathrm{C}=1473 \mathrm{~K}, \mathrm{~V}_{1}=25 \mathrm{~L}, \mathrm{~T}_{2}=25^{\circ} \mathrm{C}=298 \mathrm{~K}, \mathrm{~V}_{2}=? \\
& \mathrm{~V}_{2}=\underline{V}_{1} \underline{T}_{2} T_{2}=\frac{(25 \mathrm{~L})(298 \mathrm{~K})}{(1473 \mathrm{~K})}=5.1 \mathrm{~L}
\end{aligned}
$$

7) A helium balloon with an internal pressure of 1.00 atm and a volume of 4.50 L at $20.0^{\circ} \mathrm{C}$ is released. What volume will the balloon occupy at an altitude where the pressure is 0.600 atm and the temperature is $-20.0^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& P_{1}=1.00 \mathrm{~atm}, \mathrm{~V}_{1}=4.50 \mathrm{~L}, \mathrm{~T}_{1}=20.0^{\circ} \mathrm{C}=293 \mathrm{~K}, \mathrm{P}_{2}=0.600 \mathrm{~atm}, \mathrm{~V}_{2}=?, \\
& \mathrm{~T}_{2}=-20.0^{0} \mathrm{C}=253 \mathrm{~K} \\
& \mathrm{~V}_{2}=\mathrm{P}_{1} \mathbf{V}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}=\frac{(1.00 \mathrm{~atm})(4.50 \mathrm{~L})(253 \mathrm{~K})}{(293 \mathrm{~K})(0.600 \mathrm{~atm})}=6.48 \mathrm{~L}
\end{aligned}
$$

8) There are 135 L of gas in a container at a temperature of $260^{\circ} \mathrm{C}$. If the gas was cooled until the volume decreased to 75 L , what would the temperature of the gas be?

$$
\begin{aligned}
& T_{1}=260^{\circ} \mathrm{C}=533 \mathrm{~K}, \mathrm{~V}_{1}=135 \mathrm{~L}, \mathrm{~T}_{2}=?, \mathrm{~V}_{2}=75 \mathrm{~L} \\
& \mathrm{~T}_{2}=\underline{V}_{2} \underline{\mathrm{~V}}_{1}=\frac{(75 \mathrm{~L})(533 \mathrm{~K})}{(135 \mathrm{~L})}=296 \mathrm{~K}=23^{\circ} \mathrm{C}
\end{aligned}
$$

9) A 75 L container holds 62 moles of gas at a temperature of $215^{\circ} \mathrm{C}$. What is the pressure in atmospheres inside the container? $215^{\circ} \mathrm{C}=\mathbf{4 8 8} \mathrm{K}$

$$
P=\frac{\mathrm{nRT}}{V}=\frac{(62 \mathrm{~mol})(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K})(488 \mathrm{~K})}{(75 \mathrm{~L})}=33 \mathrm{~atm}
$$

10) 6.0 L of gas in a piston at a pressure of 1.0 atm are compressed until the volume is 3.5 L . What is the new pressure inside the piston?

$$
\begin{aligned}
& P_{1}=1.0 \mathrm{~atm}, V_{1}=6.0 \mathrm{~L}, P_{2}=?, V_{2}=3.5 \mathrm{~L} \\
& P_{2}=\underline{P}_{1} \underline{V}_{\mathbf{1}}=\frac{(1.0 \mathrm{~atm})(6.0 \mathrm{~L})}{(3.5 \mathrm{~L})}=1.7 \mathrm{~atm}
\end{aligned}
$$

11) A gas canister can tolerate internal pressures up to 210 atmospheres. If a 2.0 L canister holding 3.5 moles of gas is heated to $1350^{\circ} \mathrm{C}$, will the canister explode? $\mathbf{1 3 5 0}{ }^{\mathbf{}} \mathbf{C}=\mathbf{1 6 2 3} \mathrm{K}$

$$
P=\frac{\mathrm{nRT}}{\mathrm{~V}}=\frac{(3.5 \mathrm{~mol})(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K})(1623 \mathrm{~K})}{(2.0 \mathrm{~L})}=230 \mathrm{~atm}
$$

Yes, the canister will explode.

12) The initial volume of a gas at a pressure of 3.2 atm is 2.9 L . What will the volume be if the pressure is increased to 4.0 atm ?
$P_{1}=3.2 \mathrm{~atm}, \mathrm{~V}_{\mathbf{1}}=\mathbf{2 . 9} \mathrm{L}, \mathrm{P}_{2}=4.0 \mathrm{~atm}, \mathrm{~V}_{\mathbf{2}}=$?
$\mathbf{V}_{\mathbf{2}}=\underline{\mathbf{P}}_{1} \underline{\mathbf{P}}_{\mathbf{P}_{\mathbf{2}}}=\frac{(3.2 \mathrm{~atm})(\mathbf{2 . 9 ~ \mathrm { L }})}{(4.0 \mathrm{~atm})}=\mathbf{2 . 3 \mathrm { L }}$
13) An airtight container with a volume of $4.25 \times 10^{4} \mathrm{~L}$, an internal pressure of 1.00 atm , and an internal temperature of $15.0^{\circ} \mathrm{C}$ is washed off the deck of a ship and sinks to a depth where the pressure is 175 atm and the temperature is $3.00^{\circ} \mathrm{C}$. What will the volume of the gas inside be when the container breaks under the pressure at this depth?
$P_{1}=1.00 \mathrm{~atm}, V_{1}=4.25 \times 10^{4} \mathrm{~L}, \mathrm{~T}_{1}=15.0^{\circ} \mathrm{C}=288 \mathrm{~K}, \mathrm{P}_{2}=175 \mathrm{~atm}, \mathrm{~V}_{\mathbf{2}}=$? ,
$\mathrm{T}_{2}=3.00^{\circ} \mathrm{C}=276 \mathrm{~K}$
$\mathbf{V}_{\mathbf{2}}=\underline{P}_{1} \mathbf{V}_{\mathbf{T}_{1}} \mathbf{P}_{\mathbf{2}}=\frac{(\mathbf{1 . 0 0} \mathrm{atm})\left(\mathbf{4 . 2 5 \times 1 0 ^ { 4 } \mathrm { L }) (2 7 6 \mathrm { K })}\right.}{(288 \mathrm{~K})(175 \mathrm{~atm})}=\mathbf{2 3 3 \mathrm { L }}$
14) Two flasks are connected with a stopcock. Flask \#1 has a volume of 2.5 L and contains oxygen gas at a pressure of 0.70 atm . Flask \#2 has a volume of 3.8 L and contains hydrogen gas at a pressure of 1.25 atm . When the stopcock between the two flasks is opened and the gases are allowed to mix, what will the resulting pressure of the gas mixture be? ($\mathbf{P}^{\prime} \& \mathbf{V}^{\prime}$ are initial conditions before mixing)
$P_{02}^{\prime}=0.70 \mathrm{~atm}, \mathrm{P}_{\mathrm{H} 2}^{\prime}=1.25 \mathrm{~atm}, \mathrm{~V}_{\mathbf{0 2}}^{\prime}=2.5 \mathrm{~L}, \mathrm{~V}_{\mathrm{H} 2}^{\prime}=3.8 \mathrm{~L}, \mathrm{~V}=6.3 \mathrm{~L}$
$O_{2}: \quad P_{2}=\underline{P}_{0}^{\prime} \frac{V_{2}}{V} \underline{{ }_{0}}=\frac{(0.70 \mathrm{~atm})(2.5 \mathrm{~L})}{(6.3 \mathrm{~L})}=0.28 \mathrm{~atm}$
$H_{2}: \quad P_{2}=\underline{P}_{\underline{H 2} 2}^{\prime} V^{\prime} \underline{H 2}=\frac{(1.25 \mathrm{~atm})(3.8 \mathrm{~L})}{(6.3 \mathrm{~L})}=0.75 \mathrm{~atm}$
$P_{\text {Tot }}=\mathbf{P}_{\mathbf{0} 2}+\mathbf{P}_{\mathrm{H} 2}=\mathbf{0 . 2 8} \mathbf{~ a t m}+0.75 \mathrm{~atm}=1.0 \mathrm{~atm}$
15) A weather balloon has a volume of 35 L at sea level (1.0 atm). After the balloon is released it rises to where the air pressure is 0.75 atm . What will the new volume of the weather balloon be?
$P_{1}=1.0 \mathrm{~atm}, \mathrm{~V}_{1}=35 \mathrm{~L}, \mathrm{P}_{2}=0.75 \mathrm{~atm}, \mathrm{~V}_{2}=$?
$\mathbf{V}_{2}={\underset{1}{1}}_{\mathbf{P}_{2}} \mathbf{V}_{1}=\frac{(1.0 \mathrm{~atm})(35 \mathrm{~L})}{(0.75 \mathrm{~atm})}=47 \mathrm{~L}$
